ANAGLYPH PICTURES IN MY RESEARCH

This is a brief description of one of the visual aspects of my recent research. For a more detailed description of my research, and for an interactive version of the final graph below, please visit my website at www.whitneyberard.com/research.

The objects I study are called Serre weights - irreducible \mathbb{F}_{p}-representations of $\mathrm{GL}_{n}\left(\mathbb{F}_{p}\right)$. By a theorem of Steinberg, these can be parametrized by n-tuples of integers $\left(a_{1}, \ldots, a_{n}\right)$, where $0 \leq a_{i}-a_{i+1} \leq p-1$, and we write $F\left(a_{1}, \ldots, a_{n}\right)$ to represent a Serre weight.

For four-dimensional representations, we visualize a weight $F(a-3, b-2, c-1, d)$ as the point $(a-b, b-c, c-d)$ in 3D space. The weight space we are concerned with can be visualized as a cube with side length p, with four planes cutting the cube into six pieces, called alcoves. The only way I have found to effectively understand this picture is with a 3D picture viewable by 3D glasses.

Below is a picture of the dimension four alcoves, followed by a similar picture rendered to be seen with 3D red-cyan glasses.

For a particular n-tuple $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, I am interested in the list of Jordan-Hölder factors $F\left(\mathbf{a}_{i}\right)$ of a Weyl module $W(\mathbf{a})$. It turns out that each of the \mathbf{a}_{i} 's is a successive reflection of a about the planes in the relevant weight space.

For me, the interesting cases to look at are when a weight lies on one of the boundaries. For example, let's look at the weight $\mathbf{a}=(a-3, b-2, c-1, d)$ with $(a-b, b-c, c-d)=(x, p, x)$, where $x<p / 2$. To find the Jordan-Hölder factors of $W(a-3, b-2, c-1, d)$, we look at all the reflections of a about the hyperplanes inside this cube. When a is on a boundary, it happens that the only Jordan-Hölder factors that survive are those that end up on an "upper" boundary of an alcove.

In the following picture, we take the point $I=(x, p, x)$, and reflect it about the various hyperplanes to obtain J, K, L. If you've got your trusty 3 D glasses on, you'll notice that:

- $I=(x, p, x)$ is on an upper boundary of the alcove $F G C D$,
- $J=(0, p-x, 2 x)$ is on a lower boundary of the alcove $E F G C$,
- $K=(2 x, p-a, 0)$ is on a lower boundary of the alcove $B C D F$, and
- $L=(a, p-2 a, a)$ is on the upper boundary of the alcove $A B C E$.

Since J, K are not on upper boundaries of any alcove, those Serre weights do not survive in the Jordan-Hölder decomposition. The Jordan-Holder factors of $W(\mathbf{a})$ are $F(\mathbf{a})$ and $F(\mathbf{b})$, where \mathbf{b} is the Serre weight corresponding to the point L in the picture.

